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Abstract

Velocity-independent seismic data processing
requires information about the local slope in the
data. From estimates of local time and space
derivatives of the data, a total least squares algorithm
gives an estimate of the local slope at each data
point. Total least squares minimizes the orthogonal
distance from the data points (the local time and space
derivatives) to the fitted straight line defining the local
slope. This gives a more consistent estimate of local
slope than standard least squares, since it takes into
account uncertainty in both the temporal and spatial
derivatives.

The new slope estimation algorithm is applied to
stacking along local slope. Starting at the largest
offset, the estimated signal is accumulated until the
smallest offset without using velocity information.
Extrapolation to zero offset is done using a hyperbolic
traveltime function where slope information replaces
the knowledge of the NMO velocity. The new data
processing method requires no velocity analysis or
mute and there is no stretch effect. All major
reflections and diffractions which are present at zero
offset will be reproduced in the output zero-offset
section. It therefore requires previous multiple removal
if multiple reflections are undesired in the output.

In the case that the NMO velocities for the primary
reflections are known, this can be used to produce
a map of local slope. Stacking along these slopes
produces a better estimate of the zero-offset primary
reflections, again without stretch effect.

Synthetic and field seismic data examples
demonstrate the effectiveness of the method.
Comparison with standard seismic data processing,
velocity analysis, mute, NMO correction and stack,
shows that the new method is superior in complex
data sets.

Introduction

In conventional seismic data processing (Yilmaz, 1987)
normal-moveout (NMO) velocities are estimated from
common-midpoint (CMP) data gathers and used in NMO
corrections before the data are stacked to produce an
estimate of the zero-offset section. The choice of the NMO

velocities for the primary reflections (velocity picking) is
tedious and requires interpretation.

Velocity-independent seismic time processing uses local
slope information (Ottolini, 1983, Fomel, 2007) instead of
NMO velocities. The seismic data are analysed according
to local slope which must be estimated. This can be done
by plane-wave destruction (Fomel, 2002) or by semblance-
based methods (Marfurt, 2006). A survey is given by
Schleicher et al (2009).

We first estimate the local time and space derivatives of
the data using a method given by Melo et al (2009) with
an interpolation algorithm described by Shepard (1968).
These local derivatives will be used to estimate the local
slope p = dt/dx at each data point. As both the time
derivatives and the space derivatives have errors, total
least squares is used to estimate the local slope as
described in Porsani et al (2013). In total least squares
we minimize the orthogonal distance from the data points
to the fitted straight line. Markovsky and Van Huffel (2007)
discuss many technical issues of total least squares and
there are numerous references.

The new slope estimation method can be used in a
number of applications for velocity-independent seismic
time processing, including stacking along local slope
(Fomel, 2007) pre-stack time migration (Cooke et al, 2009),
stereotomography (Lambaré, 2006) or dip-adaptive filtering
(Porsani et al, 2013).

Here we shall demonstrate it on stacking along local
slope. This will enhance all strong coherent events in
the data, like reflections and diffractions. If multiple
reflections are undesired, they should be attenuated before
the stacking process is applied. This can be done with
a surface-related-multiple elimination algorithm (Verschuur
et al, 1992) and/or with parabolic Radon transform filtering
(Abbad et al, 2011). The result of the stacking process
is an estimate of the signal at the least recorded offset.
This signal is extrapolated to zero offset using an equation
similar to the one used by Ottolini (1983) or Fomel (2007).

We propose to compute a local slope field which
corresponds to the estimated NMO velocities of the primary
reflections. Stacking along these slopes yield a stack
section with the correct NMO velocities and reduced
presence of multiple reflections. And the slope stack has
very small stretch effects.

The different processing schemes are illustrated with
synthetic and field data examples.

Estimation of local slope

We have data d(ti,x j) for ti, i = 1, . . . ,Nt and x j, j = 1, . . . ,Nx.
First we estimate the local time and space derivative of the
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data, Dtk and Dxk, using the method described by Melo et
al (2009).

We expand the data d(t,x) in a Taylor series

d(t +∆t,x+∆x) = d(t,x)+
∂d
∂ t

∆t +
∂d
∂x

∆x (1)

For a plane wave d(t +∆t,x+∆x) = d(t,x) so that

∂d
∂ t

∆t +
∂d
∂x

∆x = 0 (2)

With p = dt/dx and using the derivatives

pDtk +Dxk = 0 (3)

where the index k covers a suitable domain around the (t,x)
value we want to estimate p. Using standard least squares
we minimize

φt = ||et ||2 = ∑
k
|pDtk +Dxk|2 = ap2 +2cp+b (4)

with a = ∑k |Dtk|2, b = ∑k |Dtx|2, c = ∑k DtkDxk.

The result is

p̂ =− c
a

(5)

Alternatively we may estimate q = dx/dt by minimizing, see
Fig.1,

φx = ||ex||2 = ∑
k
|qDxk +Dtk|2 = bq2 +2cq+a (6)

The result is

q̂ =− c
b

(7)

We note that

p̂q̂ =
c2

ab
(8)

Ideally this product should be one, as (dt/dx)(dx/dt) = 1.

In total least squares one minimizes the sum of the squared
distances from the data points to the line dt = pdx. As seen
from Fig. 1 this corresponds to minimizing

φp = ||e||2 = ||et ||2cos2
θ =

||et ||2

1+ p2 (9)

since p = tanθ . Using equation 4, ∂φ/∂ p = 0 gives

p =− 1
2c

[
(b−a)+

√
(b−a)2 +4c2

]
(10)

Alternatively, we may minimize, see Figure 1,

φq = ||e||2 = ||ex||2sin2
θ =

||ex||2

1+q2 (11)

since q = cot θ . Using equation 6, ∂φq/∂q = 0 gives

q =− 1
2c

[
(a−b)+

√
(a−b)2 +4c2

]
(12)

We note that pq = 1, as it should be.

Van Huffel and Vandervalle (1991) define total least
squares via SVD, analysing the problem

C
[

p
1

]
= [Dtk Dxk ]

[
p
1

]
≈ 0 (13)

We solve the eigenvalue problem (Porsani et al, 2013)

CT C
[

p
1

]
=

[
a c
c b

][
p
1

]
= σ

2
[

p
1

]
(14)

for the smallest eigenvalue σ2. The solution is

σ
2
± =

1
2

[
(a+b)±

√
(a−b)2 +4c2

]
(15)

Choosing the smallest value we obtain

p′ = p′− =
−c

a−σ2
−

=
−2c

a−b+
√

(a−b)2 +4c2
(16)

and

q′ =−p′+ =
−c

−a+σ2
+

=
−2c

b−a+
√

(b−a)2 +4c2
(17)

We note that p′q′ = 1 and that p′ = p and q′ = q. That is,
there are unique solutions for p and q, given by equations
10 and 12 or by equation 16 and 17.

Stacking along local slope

We want to compute an estimate of the seismic trace
at zero offset, x = 0, including all dominant waves, both
reflections and diffractions. We start at the far offset and
build up a stack by adding contributions from each trace
using the local sloope estimate. At (ti,x j) we want to
extrapolate the accumulated stacked signal to x j−1 and add
it to the recorded data there. Using local slope at (ti, x j)
time is extrapolated to

t = ti + p(x j− x j−1) = ti′ −β (ti′ − ti′−1)

where 0 ≤ β < 1. The accumulated stacked signal d̂(ti, x j)
is linearly distributed between ti′ and ti′−1 and added to the
recorded signal, see Fig. 2. The accumulated signal at
x j−1 is

d̂(ti′ , x j−1) = d(ti′ , x j−1)+(1−β )d̂(ti, x j)

d̂(ti′−1, x j−1) = d(ti′−1, x j−1)+β d̂(ti, x j)
(18)

The procedure is started at the far offset with d(ti, xNx).

In a final step we want to extrapolate this signal to zero
offset, x = 0. We use the hyperbolic traveltime function
(Yilmaz, 1987)

T (x) =

√
T (0)2 +

x2

v2
NMO

(19)

so that

p =
dT
dx

=
x

T (x)v2
NMO

(20)

To extrapolate to zero-offset we obtain (Ottolini, 1983;
Fomel, 2007)

T (0) =
√

T (x)2− pxT (x) (21)
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Stacking along the NMO velocity slope

We shall use the NMO velocity derived in a classical
velocity analysis (Yilmaz, 1987), vNMO(T (0)), to compute
the local slope. For each (t, x) value we solve the equation

t2 = T (x)2 = T (0)2 +
x2

v2
NMO(T (0))

(22)

for T (0) and vNMO(T (0)). The result is vNMO(t, x) and the
local slope

p(t,x) =
x

tv2
NMO(t,x)

(23)

Stacking along this slope-field will enhance reflections with
the chosen NMO velocities.

In practice, we do not solve equation 22, but assume
that the slope is slowly varying and compute it along the
moveout curves (eq. 22) in steps of ∆T (0). At each offset
value x, the nearest time grid point i∆t less than T (x) is
given the slope p in equation 23 with the NMO velocity
corresponding to T (0).

Numerical results

In the numerical examples we produce three types of stack
sections: NMO stack, the standard stack using primary
NMO velocities for NMO corrections and summation; NMO
slope stack, stack along local slope derived from NMO
velocities; and automatic slope stack, stack along local
slope estimated by total least squares. In the automatic
slope stack procedure we have used 8 points (a 3 ×
3 grid minus the center point) for the estimation of the
local derivatives in the time and offset directions. For the
estimation of the local slope we also used a 3 × 3 grid
around the central point. A larger local grid will result in a
smoother function for the local slope.

In the automatic stacking process we do not want to include
waves with negative slope. We constrain the local slope to
the range

x
tv2

NMO,max
≤ p(t,x)≤ x

tv2
NMO,min

(24)

(In the numerical examples we used vNMO,min = 1400m/s
and vNMO,max = 8000m/s). When the estimated local slope
is outside this range, the stacking process is restarted.
That is, the local stack up to that point is not used in the
update procedure. There are at most Nx traces which are
included in the slope stack. Formally we should divide
the result of the stack by the number of traces used. As
will be shown in the first data example, this reduces the
amplitudes too much. The amplitudes are only relative,
and they do not represent the amplitudes on a zero-offset
section.

In the first data example we analyse three idealized
reflected waves with hyperbolic traveltimes with
(T (0),vNMO)=(0.6s, 1500m/s), (1.4s, 2000m/s) and
(2s, 2500m/s) respectively. The wavelets are all a 30Hz
Ricker wavelet with unit amplitude on all traces. This is an
ideal set-up for NMO stack where the correct traveltime
parameters were used. There are 95 traces with a regular
spacing ∆x = 20m, and offsets ranging from 120m to
2000m. The time sample interval is ∆t = 4ms.

The results are shown in Fig. 3 where Fig 3a shows the
regular build-up of the accumulated automatic slope stack
from the far offset to the minimum offset. In the last step
from offset x1 = 120m to zero offset, the hyperbolic time
extrapolation in equation 32 was used. In Fig 3b trace
1 shows the ideal zero-offset trace. Trace 2 shows the
result of NMO stack using the true traveltime parameters.
It is seen that the first reflection at 0.6s suffers from NMO
stretch effects (Yilmaz, 1987), and that the two other
reflection give a perfect zero-offset signal.

The result of the automatic slope stack in trace 3 has been
normalized so that max amplitude is equal to one. The
wavelets are very well reproduced; the one at 0.6s has
a slight asymmetric appearance, but there is no stretch
effect. Trace 4 shows the result of automatic slope stack
with amplitudes divided by the number of traces. There is
a considerable amplitude reduction due to the numerous
application of linear extrapolation.

Trace 5 and 6 show the results from NMO slope stack
where the correct NMO velocities were used to compute
the local slope. There is a slight lack of symmetry in the
pulse at 0.6s, but there is no stretch. There is a reduction
in amplitude as compared with NMO stack, similar to the
automatic slope stack.

In the next data example we consider the Hess 2D VTI
model. It consists of a buried salt body at the left part of
the section and a major fault at the right part. There are
no free-surface multiples in the data. There are 3552 CMP
gathers with 131 traces. The minimum offset is 67 m, the
trace spacing is 67 m, and the maximum offset is 8730 m.
The time sample interval is 6 ms.

We first analyse CMP 900 which is shown in Fig. 4a. Fig 4b
shows the build-up of the cumulative automatic slope stack.
It is shown that the stacking process removes considerable
amount of noise, and that many coherent event will not be
mapped to zero offset. When compared with the CMP data
in Fig. 4a, it is seen that these events are not present on the
near-offset traces. In NMO stack these events will appear,
because they are strong at medium offsets. Fig. 4c shows
the estimated slopes using total least squares, and Fig 4d
shows the local slope computed from NMO velocities.

The final stack section are shown in Fig. 5. Fig. 5a shows
the zero-offset data, Fig. 5b shows the result of automatic
slope stack without mute. Fig. 5c shows the result of NMO
slope stack without mute and Fig. 5d shows the result of
NMO stack with mute applied to the data. It is seen that the
automatic slope stack preserves most of the events on the
zero-offset section, while NMO stack shows many events
which are not present there.

Conclusions

We have developed a new method for estimating local
slope using local derivatives and total least squares.
The method may be applied to many forms for seismic
time processing, including pre-stack time migration, dip-
adaptive filtering and stereotomography.

The application to stacking along local slope resulted in a
method for automatic generation of a zero-offset section,
including all major events, reflections and diffractions. No
velocity analysis or mute is needed and there is no stretch
effect. The method does not give true-amplitude sections,
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but relative amplitudes are preserved.

In order to enhance only primary reflections, local slope
may be computed from the NMO velocities for the desired
reflections. This results in a NMO slope stack with similar
results as NMO stack, but without stretch effects.

The first synthetic data example shows that both slope
stack processes give results without stretch effects, but
only relative amplitudes. The second synthetic data
example shows that the automatic slope stack results in
a section very close to zero-offset data, and that the NMO
slope stack gives better results than NMO stack for early
times. For later times they are very similar.
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Figure 3: Ideal data example. (a) Accumulated seismic traces in the automatic slope stack. (b) Zero-offset seismic traces:
Trace 1, the zero-offset trace; trace 2, the result from NMO stack; trace 3, the result from automatic slope stack, normalized
amplitude; trace 4 automatic slope stack divided by the number of traces; trace 5, the result from NMO slope stack normalized
amplitude; trace 6, NMO slope stack divided by the number of traces.
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Figure 4: CMP 900 of the Hess 2D VTI data set. (a) The CMP data. (b) The cumulative build-up of the automatic slope stack.
(c) Total least squares estimate of local slope. (d) Local slope computed from NMO velocities.
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Figure 5: The Hess 2D VTI data set. (a) Zero-offset section data. (b) Result from automatic slope stack, no mute. (c) Result
from NMO slope stack, no mute. (d) Result from NMO stack with mute.
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